Japanese Prime Minister Naoto Kan said, "In the 65 years after the end of World War II, this is the toughest and the most difficult crisis for Japan." The Japanese National Police Agency has confirmed 15,826 deaths, 5,942 injured, and 3,810 people missing across eighteen prefectures, as well as over 125,000 buildings damaged or destroyed. The earthquake and tsunami caused extensive and severe structural damage in Japan, including heavy damage to roads and railways as well as fires in many areas, and a dam collapse. Around 4.4 million households in northeastern Japan were left without electricity and 1.5 million without water. Many electrical generators were taken down, and at least three nuclear reactors suffered explosions due to hydrogen gas that had built up within their outer containment buildings after cooling system failure. Residents within a 20 km (12 mi) radius of the Fukushima I Nuclear Power Plant and a 10 km (6.2 mi) radius of the Fukushima II Nuclear Power Plant were evacuated. In addition, the U.S. recommended that its citizens evacuate up to 80 km (50 mi) of the plant.
The earthquake moved Honshu 2.4 m (8 ft) east and shifted the Earth on its axis by estimates of between 10 cm (4 in) and 25 cm (10 in).
The 9.0-magnitude (MW) undersea megathrust earthquake occurred on 11 March 2011 at 14:46 JST (05:46 UTC) in the western Pacific Ocean at a relatively shallow depth of 32 km (19.9 mi), with its epicenter approximately 72 km (45 mi) east of the Oshika Peninsula of TÅhoku, Japan, lasting approximately six minutes. The nearest major city to the quake was Sendai, on the main island of Honshu, 130 km (81 mi) away. The quake occurred 373 km (232 mi) from Tokyo. The main earthquake was preceded by a number of large foreshocks, and hundreds of aftershocks were reported. The first major foreshock was a 7.2 MW event on 9 March, approximately 40 km (25 mi) from the location of the 11 March quake, with another three on the same day in excess of 6.0 MW. Following the quake, a 7.0 MW aftershock was reported at 15:06 JST, followed by a 7.4 at 15:15 JST and a 7.2 at 15:26 JST. Over eight hundred aftershocks of magnitude 4.5 or greater have occurred since the initial quake. Aftershocks follow Omori's Law, which states that the rate of aftershocks declines with the reciprocal of the time since the main quake. The aftershocks will thus taper off in time but could continue for years.
One minute before the earthquake was felt in Tokyo, the Earthquake Early Warning system, which includes more than 1,000 seismometers in Japan, sent out warnings of impending strong shaking to millions. It is believed that the early warning by the Japan Meteorological Agency (JMA) saved many lives. The warning for the general public was delivered about 8 seconds after the first P wave was detected, or about 31 seconds after the earthquake occurred. However, the estimated intensities were smaller than the actual ones in some places in Kanto and Tohoku regions. This was thought to be because of smaller estimated earthquake magnitude, smaller estimated fault plane, shorter estimated fault length, not having considered the shape of the fault, etc.
Initially reported as 7.9 MW by the USGS, the magnitude was quickly upgraded to 8.8, then again to 8.9, and then finally to 9.0.
This earthquake occurred where the Pacific Plate is subducting under the plate beneath northern Honshu; which plate is a matter of debate amongst scientists. The Pacific plate, which moves at a rate of 8 to 9 cm (3.1 to 3.5 in) per year, dips under Honshu's underlying plate releasing large amounts of energy. This motion pulls the upper plate down until the stress builds up enough to cause a seismic event. The break caused the sea floor to rise by several meters. A quake of this magnitude usually has a rupture length of at least 480 km (300 mi) and generally requires a long, relatively straight fault surface. Because the plate boundary and subduction zone in the area of the rupture is not very straight, it is unusual for the magnitude of an earthquake to exceed 8.5; the magnitude of this earthquake was a surprise to some seismologists. The hypocentral region of this earthquake extended from offshore Iwate Prefecture to offshore Ibaraki Prefecture. The Japanese Meteorological Agency said that the earthquake may have ruptured the fault zone from Iwate to Ibaraki with a length of 500 km (310 mi) and a width of 200 km (120 mi). Analysis showed that this earthquake consisted of a set of three events. The earthquake may have had a mechanism similar to that of another large earthquake in 869 with an estimated surface wave magnitude (Ms) of 8.6, which also created a large tsunami. Other major earthquakes with tsunamis struck the Sanriku Coast region in 1896 and in 1933.
The strong ground motion registered at the maximum of 7 on the Japan Meteorological Agency seismic intensity scale in Kurihara, Miyagi Prefecture. Three other prefectures—Fukushima, Ibaraki and Tochigi—recorded an upper 6 on the JMA scale. Seismic stations in Iwate, Gunma, Saitama and Chiba Prefecture measured a lower 6, recording an upper 5 in Tokyo. In Russia, the main shock could be felt in Yuzhno-Sakhalinsk (MSK 4) and Kurilsk (MSK 4). The aftershock at 06:25 UTC could be felt in Yuzhno-Kurilsk (MSK 5) and Kurilsk (MSK 4). This earthquake released a surface energy (Me) of 1.9 ± 0.5×1017 joules, dissipated as shaking and tsunamic energy, which is nearly double that of the 9.1-magnitude 2004 Indian Ocean earthquake and tsunami that killed 230,000 people. If harnessed, the surface energy from this earthquake would power a city the size of Los Angeles for an entire year. The total energy released, also known as the seismic moment (M0), was more than 200,000 times the surface energy and was calculated by the USGS at 3.9×1022 joules, slightly less than the 2004 Indian Ocean quake. This is equivalent to 9,320 gigatons of TNT, or approximately 600 million times the energy of the Hiroshima bomb.
The earthquake moved Honshu 2.4 m (8 ft) east and shifted the Earth on its axis by estimates of between 10 cm (4 in) and 25 cm (10 in).
The 9.0-magnitude (MW) undersea megathrust earthquake occurred on 11 March 2011 at 14:46 JST (05:46 UTC) in the western Pacific Ocean at a relatively shallow depth of 32 km (19.9 mi), with its epicenter approximately 72 km (45 mi) east of the Oshika Peninsula of TÅhoku, Japan, lasting approximately six minutes. The nearest major city to the quake was Sendai, on the main island of Honshu, 130 km (81 mi) away. The quake occurred 373 km (232 mi) from Tokyo. The main earthquake was preceded by a number of large foreshocks, and hundreds of aftershocks were reported. The first major foreshock was a 7.2 MW event on 9 March, approximately 40 km (25 mi) from the location of the 11 March quake, with another three on the same day in excess of 6.0 MW. Following the quake, a 7.0 MW aftershock was reported at 15:06 JST, followed by a 7.4 at 15:15 JST and a 7.2 at 15:26 JST. Over eight hundred aftershocks of magnitude 4.5 or greater have occurred since the initial quake. Aftershocks follow Omori's Law, which states that the rate of aftershocks declines with the reciprocal of the time since the main quake. The aftershocks will thus taper off in time but could continue for years.
Latest earthquakes in Europe, | Map from NASA via Windows Live | earthquakes today Europe | Europe won\x26#39;t have anything to | World Map Earthquake |
See our LIVE EARTHQUAKE MAP | See our LIVE EARTHQUAKE MAP | More than 200000 people live | http://earthquake.usgs.gov/eqcenter/recenteqsww/Maps/region/Europe.php | Earthquake Density Map – |
This earthquake occurred where the Pacific Plate is subducting under the plate beneath northern Honshu; which plate is a matter of debate amongst scientists. The Pacific plate, which moves at a rate of 8 to 9 cm (3.1 to 3.5 in) per year, dips under Honshu's underlying plate releasing large amounts of energy. This motion pulls the upper plate down until the stress builds up enough to cause a seismic event. The break caused the sea floor to rise by several meters. A quake of this magnitude usually has a rupture length of at least 480 km (300 mi) and generally requires a long, relatively straight fault surface. Because the plate boundary and subduction zone in the area of the rupture is not very straight, it is unusual for the magnitude of an earthquake to exceed 8.5; the magnitude of this earthquake was a surprise to some seismologists. The hypocentral region of this earthquake extended from offshore Iwate Prefecture to offshore Ibaraki Prefecture. The Japanese Meteorological Agency said that the earthquake may have ruptured the fault zone from Iwate to Ibaraki with a length of 500 km (310 mi) and a width of 200 km (120 mi). Analysis showed that this earthquake consisted of a set of three events. The earthquake may have had a mechanism similar to that of another large earthquake in 869 with an estimated surface wave magnitude (Ms) of 8.6, which also created a large tsunami. Other major earthquakes with tsunamis struck the Sanriku Coast region in 1896 and in 1933.
Real Time Tools Earthquake Map | Get Live Earthquake Updates on | earthquakes are popping up | Japan Nuclear Power Plant Maps | Earthquake live map |
An powerful earthquake | US Map Quake Center | Earthquake in Haiti - | The Federal Deposit Insurance | Halloween Horror Nights 21 |
No comments:
Post a Comment